[CSDM] Discrete math seminar
Paul Seymour
pds at math.princeton.edu
Wed Sep 19 23:25:18 EDT 2012
***********************************
* Princeton Discrete Math Seminar *
***********************************
Date: Thursday 20th September, 2.00 in Fine Hall 224
(note the change of time; this is permanent!)
Speaker: Peter Nelson (Wellington)
Title: The Erdos-Stone Theorem for finite geometries
Abstract: For any class of graphs, the growth function h(n) of the class is
defined to be the maximum number of edges in a graph in the class on n
vertices. The Erdos-Stone Theorem remarkably states that, for any class of
graphs that is closed under taking subgraphs, the asymptotic behaviour of h(n)
can (almost) be precisely determined just by the minimum chromatic number of a
graph not in the class. I will present a surprising version of this theorem for
finite geometries, obtained in joint work with Jim Geelen. This result is a
corollary of the famous Density Hales-Jewett Theorem of Furstenberg and
Katznelson.
-----------
Next week: Wesley Pegden
Anyone wishing to be added to or removed from this mailing list should
contact Paul Seymour (pds at math.princeton.edu)
More information about the csdm
mailing list