<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-8859-2"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:Wingdings;
        panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
p
        {mso-style-priority:99;
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
pre
        {mso-style-priority:99;
        mso-style-link:"HTML Preformatted Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:10.0pt;
        font-family:"Courier New";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
span.HTMLPreformattedChar
        {mso-style-name:"HTML Preformatted Char";
        mso-style-priority:99;
        mso-style-link:"HTML Preformatted";
        font-family:"Courier New";}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
/* List Definitions */
@list l0
        {mso-list-id:659583636;
        mso-list-type:hybrid;
        mso-list-template-ids:641638050 67698689 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;}
@list l0:level1
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l0:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l0:level3
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
@list l0:level4
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l0:level5
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l0:level6
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
@list l0:level7
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l0:level8
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l0:level9
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
@list l1
        {mso-list-id:1267732720;
        mso-list-type:hybrid;
        mso-list-template-ids:312526302 67698689 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;}
@list l1:level1
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l1:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l1:level3
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
@list l1:level4
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l1:level5
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l1:level6
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
@list l1:level7
        {mso-level-number-format:bullet;
        mso-level-text:\F0B7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Symbol;}
@list l1:level8
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:"Courier New";}
@list l1:level9
        {mso-level-number-format:bullet;
        mso-level-text:\F0A7;
        mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-.25in;
        font-family:Wingdings;}
ol
        {margin-bottom:0in;}
ul
        {margin-bottom:0in;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72"><div class=WordSection1><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>INSTITUTE FOR ADVANCED STUDY<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>School of Mathematics<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Princeton, NJ 08540<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Mathematics Seminars<o:p></o:p></span></b></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Week of April 9, 2018<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><u><span style='font-size:14.0pt;font-family:"Times New Roman",serif;background:yellow;mso-highlight:yellow'>Please note</span></u></b><b><span style='font-size:14.0pt;font-family:"Times New Roman",serif;background:yellow;mso-highlight:yellow'>:</span></b><b><span style='font-size:14.0pt;font-family:"Times New Roman",serif'> <o:p></o:p></span></b></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>The Workshop on Topology: Identifying Order in Complex Systems takes place TOMORROW, April 7, 2018 in Simonyi Hall 101 from 9:00am &#8211; 5:30pm. <a href="https://www.ias.edu/event-series/workshop-topology-identifying-order-complex-systems">https://www.ias.edu/event-series/workshop-topology-identifying-order-complex-systems</a><o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>The Emerging Topics Working Group takes place April 9 &#8211; April 12 in Simonyi Hall 101.<o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>The April 9<sup>th</sup> and 10<sup>th</sup> CSDM Seminars will be held in the <u>West Building Lecture Hall</u>.<o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>There will be no Members&#8217; Seminar on Monday, April 9. <o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>A Diophantine Analysis working group seminar will be held at Princeton University on Monday, April 9.<o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>There will be no AM or PM Locally Symmetric Spaces Seminar on Tuesday, April 10. <o:p></o:p></span></pre><pre style='margin-left:.5in;text-indent:-.25in;mso-list:l1 level1 lfo1'><![if !supportLists]><span style='font-size:12.0pt;font-family:Symbol'><span style='mso-list:Ignore'>&middot;<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>Math Conversations will be held in the <u>White-Levy room</u> on Wednesday, 4/11.<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>--------------<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>To view mathematics in titles and abstracts, please click on the talk's link.<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>--------------<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Monday, April 9<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Arnold diffusion for `complete' families of perturbations with two or three independent harmonics<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Amadeu Delshams, UPC<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           11:00am - 12:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136179">http://www.math.ias.edu/seminars/abstract?event=136179</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Computer Science/Discrete Mathematics Seminar I<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Large deviations in random graphs<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Eyal Lubetzky, New York University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           11:00am - 12:15pm/West Building Lecture Hall<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=128843">http://www.math.ias.edu/seminars/abstract?event=128843</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Members' Seminar<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>                               No Seminar: workshop<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 No seminar: workshop<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:            - <o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Symplectic geometry of hyperbolic cylinders and their homoclinic intersections<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Jean-Pierre Marco, Pierre and Marie Curie University - Paris 6<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           2:00pm - 3:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=135831">http://www.math.ias.edu/seminars/abstract?event=135831</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Princeton/IAS Symplectic Geometry Seminar<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Fukaya categories of Calabi-Yau hypersurfaces<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Paul Seidel, Massachusetts Institute of Technology; Member, School of Mathematics<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           4:00pm - 5:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=134640">http://www.math.ias.edu/seminars/abstract?event=134640</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Diophantine Analysis working group seminar<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Steenrod operations and Tate's Conjecture on the Brauer group of a surface<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Tony Feng<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           4:45pm - 6:00pm/Fine Hall 1201, Princeton University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136728">http://www.math.ias.edu/seminars/abstract?event=136728</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Tuesday, April 10<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Locally Symmetric Spaces Seminar<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 No Seminar<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           <o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Computer Science/Discrete Mathematics Seminar II<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Explicit Binary Tree Codes with Polylogarithmic Size Alphabet<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Gil Cohen, Princeton University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           10:30am - 12:30pm/West Building Lecture Hall<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=129076">http://www.math.ias.edu/seminars/abstract?event=129076</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     A General Shadowing result for normally hyperbolic invariant manifolds and its application to Arnold diffusion<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Tere Seara, UPC<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           11:00am - 12:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136182">http://www.math.ias.edu/seminars/abstract?event=136182</a><o:p></o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></b></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Locally Symmetric Spaces Seminar<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 No Seminar<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           <o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Some geometric mechanisms for Arnold diffusion<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Rafael de la Llave, Georgia Tech<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           2:00pm - 3:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=135834">http://www.math.ias.edu/seminars/abstract?event=135834</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Joint IAS/Princeton University Number Theory Seminar<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Non-spherical Poincaré series, cusp forms and L-functions for GL(3)<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Jack Buttcane, University of Buffalo<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           4:45pm - 5:45pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=135900">http://www.math.ias.edu/seminars/abstract?event=135900</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Wednesday, April 11<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Diffusion along chains of normally hyperbolic cylinders<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Marian Gidea, Yeshiva University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           11:00am - 12:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136188">http://www.math.ias.edu/seminars/abstract?event=136188</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Arnold diffusion and Mather theory<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Ke Zhang, University of Toronto<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           2:00pm - 3:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=135837">http://www.math.ias.edu/seminars/abstract?event=135837</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Mathematical Conversations<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Ordinary points mod p of hyperbolic 3-manifolds<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Mark Goresky, Visitor, School of Mathematics<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           6:00pm - 7:00pm/White Levy Room<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136523">http://www.math.ias.edu/seminars/abstract?event=136523</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Thursday, April 12<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           10:00am - 12:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Emerging Topics Working Group<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     Growth of Sobolev norms for the cubic NLS near 1D quasi-periodic solutions<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Marcel Guardia, UPC<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           11:00am - 12:00pm/Simonyi Hall 101<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Abstract Link:         <a href="http://www.math.ias.edu/seminars/abstract?event=136191">http://www.math.ias.edu/seminars/abstract?event=136191</a><o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Seminar on Theoretical Machine Learning<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     To Be Announced<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 To Be Announced<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           12:15pm - 1:45pm/White-Levy Room<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Working Group on Algebraic Number Theory<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 To Be Announced<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           2:00pm - 4:00pm/1201 Fine Hall, Princeton University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Joint IAS/Princeton University Number Theory Seminar<o:p></o:p></span></b></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Topic:                     To Be Announced<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Speaker:                 Xinwen Zhu, California Institute of Technology<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>Time/Room:           4:30pm - 5:30pm/Fine Hall 214, Princeton University<o:p></o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><pre><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></pre><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'>1 Arnold diffusion for `complete' families of perturbations with two or three independent harmonics <br>&nbsp;&nbsp;&nbsp;Amadeu Delshams <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: We prove that for any non-trivial perturbation depending on any two independent harmonics of a pendulum and a rotor there is global instability. The proof is based on the geometrical method and relies on the concrete computation of several scattering maps. A complete description of the different kinds of scattering maps taking place as well as the existence of piecewise smooth global scattering maps is also provided. Similar results apply for any non-trivial perturbation depending on any three independent harmonics of a pendulum and two rotors. This is a joint work with Rodrigo G. Schaefer. <o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=136179">http://www.math.ias.edu/seminars/abstract?event=136179</a><br><br>2 Large deviations in random graphs <br>&nbsp;&nbsp;&nbsp;Eyal Lubetzky <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>What is the probability that the number of triangles in the Erd\H{o}s-R\'enyi random graph with edge density $p$, is at least twice its mean? What is the typical structure of the graph conditioned on this rare event? For instance, when $p=o(1)$, already obtaining the order of log of this probability was a longstanding open problem finally settled by Chatterjee and by DeMarco and Kahn, whereas the latter problem remains largely open. I will review some recent progress on these questions and related ones, in both the dense and sparse regimes of the random graph.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=128843">http://www.math.ias.edu/seminars/abstract?event=128843</a><br><br>3 Symplectic geometry of hyperbolic cylinders and their homoclinic intersections <br>&nbsp;&nbsp;&nbsp;Jean-Pierre Marco <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: We first examine the existence, uniqueness, regularity, twist and symplectic properties of compact invariant cylinders with boundary, located near simple or double resonances in perturbations of action-angle systems on the annulus $A^3$. We then prove they satisfy sufficient compatibility conditions on their dynamics and their homoclinic intersections, in order to prove the existence of drifting orbits along them, shadowing pseudo-orbits of inner-homoclinic polysystems. This provides us with a good control of the local behavior of the drifting orbits near essential hyperbolic 2-dimensional tori located inside the cylinders.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=135831">http://www.math.ias.edu/seminars/abstract?event=135831</a><br><br>4 Fukaya categories of Calabi-Yau hypersurfaces <br>&nbsp;&nbsp;&nbsp;Paul Seidel <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Consider a Calabi-Yau manifold which arises as a member of a Lefschetz pencil of anticanonical hypersurfaces in a Fano variety. The Fukaya categories of such manifolds have particularly nice properties. I will review this (partly still conjectural) picture, and how it constrains the field of definition of the Fukaya category.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=134640">http://www.math.ias.edu/seminars/abstract?event=134640</a><br><br>5 Steenrod operations and Tate's Conjecture on the Brauer group of a surface <br>&nbsp;&nbsp;&nbsp;Tony Feng <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>There is a canonical pairing on the Brauer group of a surface over a finite field, which is the analogue of the Cassels-Tate pairing on the Tate-Shafarevich group of a Jacobian variety. An old conjecture of Tate predicts that this pairing is alternating. In this talk I will present a proof of Tate&#8217;s conjecture. The key new ingredient is a circle of ideas originating in algebraic topology, centered around the Steenrod operations, that is imported to algebraic geometry on the ships of eětale homotopy theory. The talk will advertise these new tools (while assuming minimal background in algebraic topology).<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=136728">http://www.math.ias.edu/seminars/abstract?event=136728</a><br><br>6 Explicit Binary Tree Codes with Polylogarithmic Size Alphabet <br>&nbsp;&nbsp;&nbsp;Gil Cohen <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>In this talk, we consider the problem of explicitly constructing a binary tree code with constant distance and constant alphabet size. We present an explicit binary tree code with constant distance and alphabet size polylog(n), where n is the depth of the tree. This is the first improvement over a two-decade-old construction that has an exponentially larger alphabet of size poly(n). For analyzing our construction, we prove a bound on the number of integral roots a real polynomial can have in terms of its sparsity with respect to the Newton basis - a result of independent interest.<br>&nbsp;<br>Joint work with Bernhard Haeupler and Leonard Schulman.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=129076">http://www.math.ias.edu/seminars/abstract?event=129076</a><br><br>7 A General Shadowing result for normally hyperbolic invariant manifolds and its application to Arnold diffusion <br>&nbsp;&nbsp;&nbsp;Tere Seara <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: In this talk we present a general shadowing result for normally hyperbolic invariant manifolds. The result does not use the existence of invariant objects like tori inside the manifold and works in very general settings. We apply this result to establish the existence of diffusing orbits in a large class of nearly integrable Hamiltonian systems. Our approach relies on successive applications of the so called `scattering map' along homoclinic orbits to a normally hyperbolic invariant manifold. The main idea is that we can closely follow any path of the scattering map. This gives the existence of diffusing orbits. The method applies to perturbed integrable Hamiltonians of arbitrary degrees of freedom (not necessarily convex) which present some hyperbolicity without any assumption about the inner dynamics. Joint work with Marian Gidea and Rafael de la Llave. <o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=136182">http://www.math.ias.edu/seminars/abstract?event=136182</a><br><br>8 Some geometric mechanisms for Arnold diffusion <br>&nbsp;&nbsp;&nbsp;Rafael de la Llave <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: We consider the problem whether small perturbations of integrable mechanical systems can have very large effects. It is known that in many cases, the effects of the perturbations average out, but there are exceptional cases (resonances) where the perturbations do accumulate. It is a complicated problem whether this can keep on happening because once the instability accumulates, the system moves out of resonance. V. Arnold discovered in 1964 some geometric structures that lead to accumulation in carefuly constructed examples. We will present some other geometric structures that lead to the same effect in more general systems and that can be verified in concrete systems. In particular, we will present an application to the restricted 3 body problem. We show that, given some conditions, for all sufficiently small (but non-zero) values of the eccentricity, there are orbits near a Lagrange point that gain a fixed amount of energy. These conditions (amount to the non-vanishing of an integral) are verified numerically. Joint work with M. Capinski, M. Gidea, T. M-Seara <o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=135834">http://www.math.ias.edu/seminars/abstract?event=135834</a><br><br>9 Non-spherical Poincaré series, cusp forms and L-functions for GL(3) <br>&nbsp;&nbsp;&nbsp;Jack Buttcane <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>The analytic theory of Poincaré series and Maass cusp forms and their L-functions for $SL(3,Z)$ has, so far, been limited to the spherical Maass forms, i.e. elements of a spectral basis for $L^2(SL(3,Z)\PSL(3,R)/SO(3,R))$. I will describe the Maass cusp forms of $L^2(SL(3,Z)\PSL(3,R))$ which are minimal with respect to the action of the Lie algebra and give a (relatively) simple method for constructing Kuznetsov-type trace formulas by considering Fourier coefficients of certain Poincaré series. In recent work with Valentin Blomer, we have extended our proof of spectral-aspect subconvexity for L-functions of $SL(3,Z)$ Maass forms to the non-spherical case, and I will discuss the structure of that proof, as well.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=135900">http://www.math.ias.edu/seminars/abstract?event=135900</a><br><br>10 Diffusion along chains of normally hyperbolic cylinders <br>&nbsp;&nbsp;&nbsp;Marian Gidea <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: We consider a geometric framework that can be applied to prove the existence of drifting orbits in the Arnold diffusion problem. The main geometric objects that we consider are 3-dimensional normally hyperbolic invariant cylinders with boundary, which admit well-defined stable and unstable manifolds. These enable us to define chains of cylinders i.e., finite, ordered families of cylinders in which each cylinder admits homoclinic connections, and any two consecutive cylinders admit heteroclinic connections. We show the existence of orbits drifting along such chains, under precise conditions on the dynamics on the cylinders, and on their homoclinic and heteroclinic connections. Our framework applies to both the a priori stable setting, once the preliminary geometric reductions are preformed, and to the a priori unstable setting, rather directly. This is joint work with J.-P. Marco. <o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=136188">http://www.math.ias.edu/seminars/abstract?event=136188</a><br><br>11 Arnold diffusion and Mather theory <br>&nbsp;&nbsp;&nbsp;Ke Zhang <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: Arnold diffusion studies the problem of topological instability in nearly integrable Hamiltonian systems. An important contribution was made my John Mather, who announced a result in two and a half degrees of freedom and developed deep theory for its proof. We describe a recent effort to better conceptualize the proof for Arnold diffusion. Combining Mather's theory and classical hyperbolic methods, we define special cohomology classes called Aubry-Mather type, where each such cohomology is connected to a nearby one for a &quot;residue perturbation&quot; of the Hamiltonian. The question of Arnold diffusion then reduces to the question of finding large connected components of such cohomologies. This is a joint work with Vadim Kaloshin. <o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=135837">http://www.math.ias.edu/seminars/abstract?event=135837</a><br><br>12 Ordinary points mod p of hyperbolic 3-manifolds <br>&nbsp;&nbsp;&nbsp;Mark Goresky <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Hyperbolic 3-manifolds with arithmetic fundamental group exhibit many remarkable number theoretic properties. Is it possible that such manifolds live over finite fields (whatever that means)? In this talk I will give some evidence for this possibility.<o:p></o:p></span></p><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-family:"Times New Roman",serif'><a href="http://www.math.ias.edu/seminars/abstract?event=136523">http://www.math.ias.edu/seminars/abstract?event=136523</a><br><br>13 Growth of Sobolev norms for the cubic NLS near 1D quasi-periodic solutions <br>&nbsp;&nbsp;&nbsp;Marcel Guardia <o:p></o:p></span></p><p style='margin-bottom:3.0pt'><span style='font-size:11.0pt'>Abstract: Consider the defocusing cubic Schrödinger equation defined in the 2 dimensional torus. It has as a subsystem the one dimension cubic NLS (just considering solutions depending on one variable). The 1D equation is integrable and admits global action angle coordinates. Therefore, all its solutions are either periodic, quasi-periodic or almost-periodic. Consider one of the finite dimensional quasiperiodic invariant tori that the 1D equation possesses. Under certain assumptions on the torus (smallness, Diophantine frequency), we show that there exist solutions of the 2D equation which start arbitrarily close to this invariant torus in the H^s topology (with 0&lt;s&lt;1) and whose H^s Sobolev norm can grow by any given factor. This is a joint work with Z. Hani, E. Haus, A. Maspero and M. Procesi.<o:p></o:p></span></p><p style='margin:0in;margin-bottom:.0001pt'><span style='font-size:11.0pt'><a href="http://www.math.ias.edu/seminars/abstract?event=136191">http://www.math.ias.edu/seminars/abstract?event=136191</a><br><br><o:p></o:p></span></p><p class=MsoNormal><span style='font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></p><p class=MsoNormal><span style='font-family:"Times New Roman",serif'><o:p>&nbsp;</o:p></span></p><p class=MsoNormal><span style='font-family:"Times New Roman",serif'>---------------------------------<br>IAS Math Seminars Home Page:<br><a href="http://www.math.ias.edu/seminars">http://www.math.ias.edu/seminars</a><o:p></o:p></span></p></div></body></html>