<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-text-flowed" style="font-family: -moz-fixed;
      font-size: 14px;" lang="x-unicode">INSTITUTE FOR ADVANCED STUDY
      <br>
      School of Mathematics
      <br>
      Princeton, NJ 08540
      <br>
      <br>
      Mathematics Seminars
      <br>
      Week of October 6, 2014<br>
      <br>
      --------------
      <br>
      To view mathematics in titles and abstracts, please click on the
      talk's link.
      <br>
      --------------
      <br>
      <br>
      <br>
      ****UPDATE: Abstract added.****
      <br>
      <br>
      Joint IAS/Princeton University Number Theory Seminar
      <br>
      Topic:         Euler systems from special cycles on unitary
      Shimura varieties and arithmetic applications
      <br>
      Speaker:     Dimitar Jetchev, École Polytechnique Fédérale de
      Lausanne
      <br>
      Time/Room:     4:30pm - 5:30pm/Fine 214, Princeton University
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=60805">http://www.math.ias.edu/seminars/abstract?event=60805</a>
      <br>
      <br>
      Euler systems from special cycles on unitary Shimura varieties and
      arithmetic applications
      <br>
       Dimitar Jetchev
      <br>
      <br>
      We construct a new Euler system from a collection of special
      1-cycles on certain Shimura 3-folds associated to \(U(2,1) \times
      U(1,1)\) and appearing in the context of the Gan--Gross--Prasad
      conjectures. We study and compare the action of the Hecke algebra
      and the Galois group on these cycles via distribution relations
      and congruence relations obtain adelically using Bruhat--Tits
      theory for the corresponding buildings. If time permits, we 
      explain some potential arithmetic applications in the context of
      Selmer groups and the Bloch--Kato conjectures for Galois
      representations associated to automorphic forms on unitary groups.
      <br>
      <br>
      <br>
      <br>
      Monday, October 6
      <br>
      <br>
      Computer Science/Discrete Mathematics Seminar I
      <br>
      Topic:         The communication complexity of distributed
      subgraph detection
      <br>
      Speaker:     Rotem Oshman, Tel Aviv University
      <br>
      Time/Room:     11:15am - 12:15pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=52304">http://www.math.ias.edu/seminars/abstract?event=52304</a>
      <br>
      <br>
      Members' Seminar
      <br>
      Topic:         Hodge theory, coniveau and algebraic cycles
      <br>
      Speaker:     Claire Voisin, Centre national de la recherche
      scientifique; Distinguished Visiting Professor, School of
      Mathematics
      <br>
      Time/Room:     2:00pm - 3:00pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=47531">http://www.math.ias.edu/seminars/abstract?event=47531</a>
      <br>
      <br>
      <br>
      <br>
      Tuesday, October 7
      <br>
      <br>
      Computer Science/Discrete Mathematics Seminar II
      <br>
      Topic:         Monotone submodular maximization over a matroid
      <br>
      Speaker:     Yuval Filmus, Member, School of Mathematics
      <br>
      Time/Room:     10:30am - 12:30pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63175">http://www.math.ias.edu/seminars/abstract?event=63175</a>
      <br>
      <br>
      Topology of Algebraic Varieties
      <br>
      Topic:         On Euler-Poincaré characteristics
      <br>
      Speaker:     Mark Andrea de Cataldo, Stony Brook University;
      Member, School of Mathematics
      <br>
      Time/Room:     11:00am - 12:30pm/Physics Library, Bloomberg Hall
      201
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=64384">http://www.math.ias.edu/seminars/abstract?event=64384</a>
      <br>
      <br>
      Topology of Algebraic Varieties
      <br>
      Topic:         Chow rings and modified diagonals
      <br>
      Speaker:     Kieran O'Grady, Sapienza - Università di Roma;
      Member, School of Mathematics
      <br>
      Time/Room:     2:00pm - 3:00pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63484">http://www.math.ias.edu/seminars/abstract?event=63484</a>
      <br>
      <br>
      Topology of Algebraic Varieties
      <br>
      Topic:         Two counterexamples arising from infinite sequences
      of flops
      <br>
      Speaker:     John Lesieutre, Member, School of Mathematics
      <br>
      Time/Room:     3:30pm - 4:30pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63494">http://www.math.ias.edu/seminars/abstract?event=63494</a>
      <br>
      <br>
      <br>
      <br>
      Wednesday, October 8
      <br>
      <br>
      Topology of Algebraic Varieties
      <br>
      Topic:         The construction problem for Hodge numbers
      <br>
      Speaker:     Stefan Schreieder, University of Bonn
      <br>
      Time/Room:     11:15am - 12:15pm/S-101
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63734">http://www.math.ias.edu/seminars/abstract?event=63734</a>
      <br>
      <br>
      Mathematical Conversations
      <br>
      Topic:         Randomness in the Mobius function and dynamics
      <br>
      Speaker:     Peter Sarnak, Professor, School of Mathematics
      <br>
      Time/Room:     6:00pm - 7:00pm/Dilworth Room
      <br>
      <br>
      <br>
      <br>
      Thursday, October 9
      <br>
      <br>
      Working Group on Algebraic Number Theory
      <br>
      Speaker:     To Be Announced
      <br>
      Time/Room:     2:00pm - 4:00pm/Fine 401, Princeton University
      <br>
      <br>
      Joint IAS/Princeton University Number Theory Seminar
      <br>
      Topic:         Euler systems from special cycles on unitary
      Shimura varieties and arithmetic applications
      <br>
      Speaker:     Dimitar Jetchev, École Polytechnique Fédérale de
      Lausanne
      <br>
      Time/Room:     4:30pm - 5:30pm/Fine 214, Princeton University
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=60805">http://www.math.ias.edu/seminars/abstract?event=60805</a>
      <br>
      <br>
      <br>
      <br>
      Friday, October 10
      <br>
      <br>
      Princeton/IAS Symplectic Geometry Seminar
      <br>
      Topic:         Superconformal simple type and Witten's conjecture
      on the relation between Donaldson and Seiberg-Witten invariants
      <br>
      Speaker:     Paul Feehan, Rutgers University
      <br>
      Time/Room:     1:30pm - 2:30pm/Fine 322, Princeton University
      <br>
      Abstract Link:    <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=59665">http://www.math.ias.edu/seminars/abstract?event=59665</a>
      <br>
      <br>
      1 The communication complexity of distributed subgraph detection
      <br>
         Rotem Oshman
      <br>
      <br>
      In distributed systems, communication between the participants in
      the computation is usually the most expensive part of the
      computation. Theoretical models of distributed systems usually
      reflect this by neglecting the cost of local computation, and
      charging only for messages sent between the participants; in
      particular, we usually assume that the computation proceeds in
      rounds, and in each round each participant can send only a limited
      number of bits. We are interested in characterizing the number of
      rounds required to perform various tasks. In this talk we discuss
      the complexity of distributed subgraph detection: there are \(n\)
      servers, each representing a node in an undirected graph, and each
      server receives as input its adjacent edges in the graph. The goal
      of the computation is to determine whether the global input graph
      contains some fixed subgraph. In the talk I will describe upper
      and lower bounds for several classes of subgraphs, through a
      connection to Turan numbers. The general case remains open. We
      also point out a connection between this problem and
      number-on-forehead communication complexity, through which we are
      able to obtain a tight lower bound on deterministic triangle
      detection.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=52304">http://www.math.ias.edu/seminars/abstract?event=52304</a>
      <br>
      <br>
      2 Hodge theory, coniveau and algebraic cycles
      <br>
         Claire Voisin
      <br>
      <br>
      My talk will be a broad introduction to what is the (mostly
      conjectural) higher dimensional generalization of Abel's theorem
      on divisors on Riemann surfaces, namely, the relationship between
      the structure of the group of algebraic cycles on a complex
      projective variety and the complexity of its so-called Hodge
      structures.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=47531">http://www.math.ias.edu/seminars/abstract?event=47531</a>
      <br>
      <br>
      3 Monotone submodular maximization over a matroid
      <br>
         Yuval Filmus
      <br>
      <br>
      Monotone submodular maximization over a matroid (MSMM) is a
      fundamental optimization problem generalizing Maximum Coverage and
      MAX-SAT. Maximum Coverage is NP-hard to approximate better than
      \(1-1/e\), an approximation ratio obtained by the greedy
      algorithm. The performance of the greedy algorithm deteriorates to
      \(1/2\) on the more general problem of MAX-SAT. Recently, Vondrak
      et al. designed a sophisticated algorithm attaining the optimal
      approximation ratio \(1-1/e\) for MSMM. Their algorithm finds a
      fractional solution for a continuous relaxation of MSMM, and then
      rounds it to a solution of the original problem. We present a
      completely different algorithm which employs the paradigm of
      non-oblivious local search and is completely combinatorial.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63175">http://www.math.ias.edu/seminars/abstract?event=63175</a>
      <br>
      <br>
      4 On Euler-Poincaré characteristics
      <br>
         Mark Andrea de Cataldo
      <br>
      <br>
      Report on R. Virk's arXiv:1406.4855v3. This is a fun, short and
      simple note with variations on the well-known theme by G. Laumon
      that the Euler characteristics with and without compact supports
      coincide.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=64384">http://www.math.ias.edu/seminars/abstract?event=64384</a>
      <br>
      <br>
      5 Chow rings and modified diagonals
      <br>
         Kieran O'Grady
      <br>
      <br>
      Beauville and Voisin proved that decomposable cycles
      (intersections of divisors) on a projective K3 surface span a
      1-dimensional subspace of the (infinite-dimensional) group of
      0-cycles modulo rational equivalence. I will address the following
      question: what is the rank of the group of decomposable 0-cycles
      of a smooth projective variety? Beauville and Voisin also proved a
      refinement of the result mentioned above, namely a decomposition
      (modulo rational equivalence) of the small diagonal in the cube of
      a K3. Motivated by this result we will discuss modified diagonals
      and their relation with conjectures of Beauville and Voisin on the
      Chow ring of hyperkaehler varieties.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63484">http://www.math.ias.edu/seminars/abstract?event=63484</a>
      <br>
      <br>
      6 Two counterexamples arising from infinite sequences of flops
      <br>
         John Lesieutre
      <br>
      <br>
      I will explain how infinite sequences of flops give rise to some
      interesting phenomena: first, an infinite set of smooth projective
      varieties that have equivalent derived categories but are not
      isomorphic; second, a pseudoeffective divisor for which the
      asymptotic multiplicity along a certain subvariety is infinite, in
      the relative setting.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63494">http://www.math.ias.edu/seminars/abstract?event=63494</a>
      <br>
      <br>
      7 The construction problem for Hodge numbers
      <br>
         Stefan Schreieder
      <br>
      <br>
      What are the possible Hodge numbers of a smooth complex projective
      variety? We construct enough varieties to show that many of the
      Hodge numbers can take all possible values satisfying the
      constraints given by Hodge theory. For example, there are
      varieties such that a Hodge number \(h^{p,0}\) is big and the
      intermediate Hodge numbers \(h^{i,p-i}\) are small.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=63734">http://www.math.ias.edu/seminars/abstract?event=63734</a>
      <br>
      <br>
      8 Euler systems from special cycles on unitary Shimura varieties
      and arithmetic applications
      <br>
         Dimitar Jetchev
      <br>
      <br>
      We construct a new Euler system from a collection of special
      1-cycles on certain Shimura 3-folds associated to \(U(2,1) \times
      U(1,1)\) and appearing in the context of the Gan--Gross--Prasad
      conjectures. We study and compare the action of the Hecke algebra
      and the Galois group on these cycles via distribution relations
      and congruence relations obtain adelically using Bruhat--Tits
      theory for the corresponding buildings. If time permits, we
      explain some potential arithmetic applications in the context of
      Selmer groups and the Bloch--Kato conjectures for Galois
      representations associated to automorphic forms on unitary groups.
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=60805">http://www.math.ias.edu/seminars/abstract?event=60805</a>
      <br>
      <br>
      9 Superconformal simple type and Witten's conjecture on the
      relation between Donaldson and Seiberg-Witten invariants
      <br>
         Paul Feehan
      <br>
      <br>
      We shall discuss two new results concerning gauge-theoretic
      invariants of "standard" four-manifolds, namely closed, connected,
      four-dimensional, orientable, smooth manifolds with \(b<sup
        class="moz-txt-sup"><span
          style="display:inline-block;width:0;height:0;overflow:hidden">^</span>1</sup>=0\)
      and \(b+ \geq 3\) and odd. We first describe how the SO(3)
      monopole link-pairing formula from Feehan and Leness (2002)
      implies that all standard four-manifolds with Seiberg-Witten
      simple type satisfy the superconformal simple type condition
      defined by Marino, Moore, and Peradze (1999). This result implies
      a lower bound, conjectured by Fintushel and Stern (2001), on the
      number of Seiberg-Witten basic classes in terms of topological
      data. In addition, we explain how the SO(3)-monopole cobordism
      formula of Feehan and Leness (2002) and the superconformal simple
      type property are used to prove Witten's Conjecture (1994)
      relating the Donaldson and Seiberg-Witten invariants. References:
      <a class="moz-txt-link-freetext"
        href="http://arxiv.org/abs/1408.5307">http://arxiv.org/abs/1408.5307</a>,
      <a class="moz-txt-link-freetext"
        href="http://arxiv.org/abs/1408.5085">http://arxiv.org/abs/1408.5085</a>,
      and <a class="moz-txt-link-freetext"
        href="http://arxiv.org/abs/math/0203047">http://arxiv.org/abs/math/0203047</a>
      <br>
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars/abstract?event=59665">http://www.math.ias.edu/seminars/abstract?event=59665</a>
      <br>
      <br>
      IAS Math Seminars Home Page:
      <br>
      <a class="moz-txt-link-freetext"
        href="http://www.math.ias.edu/seminars">http://www.math.ias.edu/seminars</a>
      <br>
    </div>
  </body>
</html>