<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-8859-1"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
pre
        {mso-style-priority:99;
        mso-style-link:"HTML Preformatted Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:10.0pt;
        font-family:"Courier New";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
span.HTMLPreformattedChar
        {mso-style-name:"HTML Preformatted Char";
        mso-style-priority:99;
        mso-style-link:"HTML Preformatted";
        font-family:"Courier New";}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoNormal>INSTITUTE FOR ADVANCED STUDY<o:p></o:p></p><p class=MsoNormal>School of Mathematics<o:p></o:p></p><p class=MsoNormal>Princeton, NJ 08540<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><b>Mathematical Conversations<o:p></o:p></b></p><p class=MsoNormal><b>Wednesday, March 13<o:p></o:p></b></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><u>About Mathematical Conversations</u>: We meet in Harry's Bar* at 6pm, where free drinks are provided. After 20 minutes, we move to the Dilworth room, where the speaker gives a 20-minute talk, followed by 15 minutes of discussion with the audience. After that we return to the bar for further discussions. Website: <a href="https://www.math.ias.edu/math-conversations">https://www.math.ias.edu/math-conversations</a><o:p></o:p></p><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'><o:p> </o:p></span></b></pre><pre><b><span style='font-size:11.0pt;font-family:"Times New Roman",serif'>*Please note this is a Buffet night so the bar will be set up in the dining hall. Dining services has requested that guests from Math Conversations gather in the Coffee Lounge after getting a drink from the bar.<o:p></o:p></span></b></pre><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>To view mathematics in titles and abstracts, please click on the talk's link.<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Topic: Wiggling and wrinkling<o:p></o:p></p><p class=MsoNormal>Speaker: Daniel Álvarez-Gavela, Member, School of Mathematics<o:p></o:p></p><p class=MsoNormal>Time/Room: 6:00pm - 7:30pm/Dilworth Room<o:p></o:p></p><p class=MsoNormal><span lang=FR>Abstract Link: </span><a href="http://www.math.ias.edu/seminars/abstract?event=136648"><span lang=FR>http://www.math.ias.edu/seminars/abstract?event=136648</span></a><span lang=FR><o:p></o:p></span></p><p class=MsoNormal><span lang=FR><o:p> </o:p></span></p><p class=MsoNormal>The idea of corrugation goes back to Whitney, who proved that homotopy classes of immersed curves in the plane are classified by their rotation number. Generalizing this result, Smale and Hirsch proved that the space of immersions of a manifold X into a manifold Y is (weakly) homotopy equivalent to the space of injective bundle maps from TX to TY, whenever dim(X) < dim(Y). One obtains surprising consequences, such as Smale's eversion of the sphere. The key insight is that one can wiggle X in the extra dimensions dim(Y)-dim(X), using the extra room for the corrugation. When dim(X)=dim(Y) there is no extra room and we cannot hope for such a result. For example, every real valued function on a circle has at least two critical points. Nevertheless, one can always wrinkle X back and forth upon itself to create the extra room. This inevitably produces some singularities, namely folds along the wrinkle, however these singularities are very simple. This basic principle underlies deep results of many mathematicians, including M. Gromov, Y. Eliashberg, N. Mishachev, K. Igusa and E. Murphy among others. In this talk we will learn how to wiggle and wrinkle manifolds, with a focus on folded mappings from the sphere to the plane. This will lead us to consider the surgery of folds and a beautiful picture discovered by J. Milnor.<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><a href="http://www.math.ias.edu/seminars">http://www.math.ias.edu/seminars</a><o:p></o:p></p></div></body></html>