<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <pre><font face="Helvetica, Arial, sans-serif">INSTITUTE FOR ADVANCED STUDY
School of Mathematics
Princeton, NJ 08540

Mathematics Seminars
Week of September 15, 2014


--------------
To view mathematics in titles and abstracts, please click on the talk's link.
--------------

Tuesday, September 16

Topology of Algebraic Varieties
Topic:                 Hodge theory and derived categories of cubic fourfolds
Speaker:         Richard Thomas, Imperial College London
Time/Room:         2:00pm - 3:00pm/S-101
Abstract Link:        <a href="http://www.math.ias.edu/seminars/abstract?event=62615">http://www.math.ias.edu/seminars/abstract?event=62615</a>

Topology of Algebraic Varieties
Topic:                 Generic K3 categories and Hodge theory
Speaker:         Daniel Huybrechts, University of Bonn
Time/Room:         3:30pm - 4:30pm/S-101
Abstract Link:        <a href="http://www.math.ias.edu/seminars/abstract?event=62625">http://www.math.ias.edu/seminars/abstract?event=62625</a>



Thursday, September 18

Working Group on Algebraic Number Theory
Speaker:         To Be Announced
Time/Room:         2:00pm - 4:00pm/Fine 401, Princeton University

Joint IAS/Princeton University Number Theory Seminar
Topic:                 Iwasawa main conjecture for supersingular elliptic curves
Speaker:         Xin Wan, Columbia University
Time/Room:         4:30pm - 5:30pm/Fine 214, Princeton University
Abstract Link:        <a href="http://www.math.ias.edu/seminars/abstract?event=62585">http://www.math.ias.edu/seminars/abstract?event=62585</a>

</font></pre>
    <font face="Helvetica, Arial, sans-serif">
      1 Hodge theory and derived categories of cubic fourfolds
      <br>
         Richard Thomas
      <br>
      <br>
    </font>
    <p><font face="Helvetica, Arial, sans-serif">Cubic fourfolds behave
        in many ways like K3 surfaces. Certain cubics - conjecturally,
        the ones that are rational - have specific K3s associated to
        them geometrically. Hassett has studied cubics with K3s
        associated to them at the level of Hodge theory, and Kuznetsov
        has studied cubics with K3s associated to them at the level of
        derived categories.
        I will explain all this via some pretty explicit examples, and
        then I will explain joint work with Addington showing that these
        2 notions of having an associated K3 surface coincide
        generically.
      </font></p>
    <font face="Helvetica, Arial, sans-serif"><a
        href="http://www.math.ias.edu/seminars/abstract?event=62615">http://www.math.ias.edu/seminars/abstract?event=62615</a><br>
      <br>
      2 Generic K3 categories and Hodge theory
      <br>
         Daniel Huybrechts
      <br>
      <br>
    </font>
    <p><font face="Helvetica, Arial, sans-serif">In this talk I will
        focus on two examples of K3 categories: bounded derived
        categories of (twisted) coherent sheaves and K3 categories
        associated with smooth cubic fourfolds. The group of
        autoequivalences of the former has been intensively studied over
        the years (work by Mukai, Orlov, Bridgeland and others), whereas
        the investigation of the latter has only just began. As a
        motivation, I shall recall Mukai's classification of finite
        groups of automorphisms of K3 surfaces and its more recent
        derived version which involves the Leech lattice. In the second
        half I will discuss work in progress describing the group of
        autoequivalences of the very general cubic K3 category in terms
        of Hodge theory.
      </font></p>
    <font face="Helvetica, Arial, sans-serif"><a
        href="http://www.math.ias.edu/seminars/abstract?event=62625">http://www.math.ias.edu/seminars/abstract?event=62625</a><br>
      <br>
      3 Iwasawa main conjecture for supersingular elliptic curves
      <br>
         Xin Wan
      <br>
      <br>
    </font>
    <p><font face="Helvetica, Arial, sans-serif">We will describe a new
        strategy to prove the plus-minus main conjecture for elliptic
        curves having good supersingular reduction at \(p\). It makes
        use of an ongoing work of Kings-Loeffler-Zerbes on explicit
        reciprocity laws for Beilinson-Flach elements to reduce to
        another main conjecture of Greenberg type, which can in turn be
        proved using Eisenstein congruences on the unitary group
        \(U(3,1)\).
      </font></p>
    <font face="Helvetica, Arial, sans-serif"><a
        href="http://www.math.ias.edu/seminars/abstract?event=62585">http://www.math.ias.edu/seminars/abstract?event=62585</a><br>
      <br>
      IAS Math Seminars Home Page:<br>
      <a href="http://www.math.ias.edu/seminars">http://www.math.ias.edu/seminars</a></font>
  </body>
</html>